Sentry Tutorial
Sentry provides error monitoring for production. LiteLLM can add breadcrumbs and send exceptions to Sentry with this integration
This works on normal, async and streaming completion calls
usage
import litellm
from litellm import completion
litellm.set_verbose = True
litellm.input_callback=["sentry"] # adds sentry breadcrumbing
litellm.failure_callback=["sentry"] # [OPTIONAL] if you want litellm to capture -> send exception to sentry
import os
os.environ["SENTRY_API_URL"] = "your-sentry-url"
os.environ["OPENAI_API_KEY"] = "your-openai-key"
# set bad key to trigger error
api_key="bad-key"
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey!"}], stream=True, api_key=api_key)
print(response)
Let us know if you need any additional options from Sentry.