LiteLLM - Caching
Caching completion()
and embedding()
calls when switched on
liteLLM implements exact match caching and supports the following Caching:
- In-Memory Caching [Default]
- Redis Caching Local
- Redis Caching Hosted
- GPTCache
Quick Start Usage - Completion
Caching - cache
Keys in the cache are model
, the following example will lead to a cache hit
import litellm
from litellm import completion
from litellm.caching import Cache
litellm.cache = Cache()
# Make completion calls
response1 = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Tell me a joke."}])
response2 = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Tell me a joke."}])
# response1 == response2, response 1 is cached
Using Redis Cache with LiteLLM
Pre-requisites
Install redis
pip install redis
For the hosted version you can setup your own Redis DB here: https://app.redislabs.com/
Usage
import litellm
from litellm import completion
from litellm.caching import Cache
litellm.cache = Cache(type="redis", host=<host>, port=<port>, password=<password>)
# Make completion calls
response1 = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Tell me a joke."}])
response2 = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Tell me a joke."}])
# response1 == response2, response 1 is cached
Custom Cache Keys:
Define function to return cache key
# this function takes in *args, **kwargs and returns the key you want to use for caching
def custom_get_cache_key(*args, **kwargs):
# return key to use for your cache:
key = kwargs.get("model", "") + str(kwargs.get("messages", "")) + str(kwargs.get("temperature", "")) + str(kwargs.get("logit_bias", ""))
print("key for cache", key)
return key
Set your function as litellm.cache.get_cache_key
from litellm.caching import Cache
cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
cache.get_cache_key = custom_get_cache_key # set get_cache_key function for your cache
litellm.cache = cache # set litellm.cache to your cache
Controlling Caching for each litellm.completion call
completion()
lets you pass in caching
(bool) [default False] to control whether to returned cached responses or not
Using the caching flag Ensure you have initialized litellm.cache to your cache object
from litellm import completion
response2 = completion(model="gpt-3.5-turbo", messages=messages, temperature=0.1, caching=True)
response3 = completion(model="gpt-3.5-turbo", messages=messages, temperature=0.1, caching=False)
Detecting Cached Responses
For resposes that were returned as cache hit, the response includes a param cache
= True
Example response with cache hit
{
'cache': True,
'id': 'chatcmpl-7wggdzd6OXhgE2YhcLJHJNZsEWzZ2',
'created': 1694221467,
'model': 'gpt-3.5-turbo-0613',
'choices': [
{
'index': 0, 'message': {'role': 'assistant', 'content': 'I\'m sorry, but I couldn\'t find any information about "litellm" or how many stars it has. It is possible that you may be referring to a specific product, service, or platform that I am not familiar with. Can you please provide more context or clarify your question?'
}, 'finish_reason': 'stop'}
],
'usage': {'prompt_tokens': 17, 'completion_tokens': 59, 'total_tokens': 76},
}
Caching with Streaming
LiteLLM can cache your streamed responses for you
Usage
import litellm
from litellm import completion
from litellm.caching import Cache
litellm.cache = Cache()
# Make completion calls
response1 = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Tell me a joke."}], stream=True)
for chunk in response1:
print(chunk)
response2 = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Tell me a joke."}], stream=True)
for chunk in response2:
print(chunk)
Usage - Embedding()
- Caching - cache
Keys in the cache are
model
, the following example will lead to a cache hit
import time
import litellm
from litellm import completion
from litellm.caching import Cache
litellm.cache = Cache()
start_time = time.time()
embedding1 = embedding(model="text-embedding-ada-002", input=["hello from litellm"*5])
end_time = time.time()
print(f"Embedding 1 response time: {end_time - start_time} seconds")
start_time = time.time()
embedding2 = embedding(model="text-embedding-ada-002", input=["hello from litellm"*5])
end_time = time.time()
print(f"Embedding 2 response time: {end_time - start_time} seconds")